Systems of Equations in Two Variables Solution by Addition

The Addition Method is also called the Elimination Method. You add the two equations together to eliminate a variable. Then you end up with one equation and one variable, which we can solve using methods from solving Linear Equations.

Addition Method

- A.) If necessary, usually is, multiply one of the equations by a number so that one of the variables will drop out when you add them.
- B.) Add the two equations to remove one of the variables.
- C.) Solve the resulting equation for the remaining variable.
- D.) Substitute this value back into one of the ORIGINAL equations
- E.) Solve for the other variable.
- F.) Double check by putting both values into both equations.

Examples:

- Ex 1) Equation 1) -2a + 3b = 6Equation 2) 2a - 4b = -10
 - A.) If necessary, usually is, multiply one of the equations by a number . Not necessary.
 - B.) Add the two equations to remove one of the variables.

Equation 1)	-2a + 3b = 6
(+) Equation 2)	2a – 4b = - 10
	- b = - 4

- C.) Solve this equation for b.
 - $-b = -4 \rightarrow$ multiply both sides by $(-1) \rightarrow b = 4$.
- D.) Substitute this value back into one of the ORIGINAL equations Equation 1) -2a + 3b = -6; $b = 4 \rightarrow -2a + 3(4) = 6$
- E.) Solve for a.

Simplify.
Subtract 12 from both sides.
Divide both sides by (-2).
Reduce.

F.) Double check by putting both values into both equations. Equation 1) -2a + 3b = 6; a = 3; b = 4 | Equation 2) -2a - 3b = 6

•	Equation 1) $-2a + 3b = 6$; $a = 3$; $b = 4$	Equation 2) $2a - 4b = -10; a = 3; b = 4$
		$2(3) - 4(4) \rightarrow 6 - 16 \rightarrow 10$ So this equation is true, thus (3, 4) is a solution to Equation 2.

Since (3, 4) is a solution to both equations, it is a solution to the System of Equations.

Ex. 2)

Equation 1) 3x + 2y = 7Equation 2) 6x - 4y = 5

- A.) Multiply Equation 1) by 2 $2(3x + 2y) = 2(7) \rightarrow 6x + 4y = 14$
- 6x + 4y = 14B.) Add the two equations: $\frac{(+) 6x - 4y = 5}{12x + 0y = 19}$
- C.) Solve this equation for x

$$12x = 19 \rightarrow x = \frac{19}{12}$$

D.) Substitute
$$x = \frac{19}{12}$$
 into Equation 1

Equation 1) 3x + 2y = 7; $x = \frac{19}{12} \rightarrow 3\left(\frac{19}{12}\right) + 2y = 7$

E.) Solve for y: $2y = 7 - 19/4 \rightarrow 2y = 9/4 \rightarrow y = 9/8$ $3\left(\frac{19}{12}\right) + 2y = 7$ Reduce $3\left(\frac{19}{12}\right)$ to $\frac{19}{4}$ or 19.25 $\frac{19}{4} + 2y = 7$ Subtract $\frac{19}{4}$ from each side. $2y = 7 - \frac{19}{4}$ Divide both sides by 2. $\frac{2y}{2} = \frac{\left(\frac{9}{4}\right)}{2}$ Remember fraction rules $\frac{9}{4} \div 2 \rightarrow \frac{9}{4} \ast \frac{1}{2}$. $y = \frac{9}{8}$

F.) Double check, put both values into both original equations

Equation 1)
$$3x + 2y = 7$$
; $x = \frac{19}{12}$; $y = \frac{9}{8}$
Equation 2) $6x - 4y = 5$
 $3\left(\frac{19}{12}\right) + 2\left(\frac{9}{8}\right) \xrightarrow{\text{Reduce}} \frac{19}{4} + \frac{9}{4} \rightarrow \frac{28}{4} \rightarrow 7$
So this equation is true, thus $\left(\frac{19}{12}, \frac{9}{8}\right)$ is a solution to Equation 1.
So this equation 2.
Equation 2) $6x - 4y = 5$

Since $\left(\frac{19}{12}, \frac{9}{8}\right)$ is a solution to both equations, it is a solution to the System of Equations.