Solving Inequalities

Properties of Inequality

Addition (Subtraction): if $\mathrm{a}>\mathrm{b}$, then $\mathrm{a}+\mathrm{c}>\mathrm{b}+\mathrm{c}$
Multiplication (Division): if $a>b$ and $c>0$, then $a c>b c$
if $\mathrm{a}>\mathrm{b}$ and $\mathrm{c}<0$, then $\mathrm{ac}<\mathrm{bc}$ (if $\mathrm{b}<\mathrm{a}$ and $\mathrm{c}<0$, then $\mathrm{bc}>\mathrm{ac}$)
An example for why you must change direction when multiplying by a negative number: $3>2$ multiply both sides by (-1) \& you have $-3>-2$, not true, so you must change it to $-3<-2$.

Steps for Solving Inequalities

1) If it is a compound inequality (covered more in Chapter 9) break it into 2 inequalities.
2) If the inequality involves a fraction, multiply both sides by the LCD.
3) Use the Distributive property to get rid of any parenthesis.
4) Simplify each side, combine like terms.
5) Get all the variable terms to one side and all non-variable(constants) to the other side \& simplify
6) Get variables alone using the multiplication property.
7) Check solution by substituting back into original, does it makes sense?

Graphing

1.) Use '(' or ')' on the endpoint(s) not included in the solution, strict inequality, see the Interval Notation File or below.
2.) Use '[' or ']' on the endpoint(s) included in the solution,
3.) Pick a point on each side of the endpoint(s) to check which way the line goes.

Examples:

1)

$$
\begin{aligned}
& x \geq-6 \\
& -6 \leq x
\end{aligned}
$$

2) $x-4>2-x$

With this problem, we start at step 5, move the x to the left and $x-4>2-x \quad$ the 4 to the right.
$\frac{+x+4+4+x}{2 x>6}$
Now we just divide both sides by 2 .
Interval Notation: $(3, \infty)$
Graph:

3) $3(t+4) \leq t+10$

First we need to use the distributive

$$
\begin{aligned}
& 3 t+12 \leq t+10 \\
& -t-12-t-12 \\
& 2 t \leq-2
\end{aligned}
$$

$$
\frac{2 t}{2} \leq \frac{-2}{2}
$$

$\mathrm{t} \leq-1$
property.

Next subtract t and 12 from each side.
Divide each side by 2 , to find t.
Interval Notation: $(-\infty,-1]$

Graph:

