Compound Linear Inequalities

Notations

Inequality Notation	Interval Notation	Meaning in Words
x < b	(-∞, b)	All numbers less than b, but not including b.
x ≤ b	(-∞, b]	All numbers less than b, including b.
a < x	(a, +∞)	All numbers greater than a, but not including a.
a ≤ x	[a, +∞)	All numbers greater than a, including a.
a < x < b	(a, b)	All numbers between a & b, but not including a or b.
a≤x <b< td=""><td>[a, b)</td><td>All numbers between a & b, including a.</td></b<>	[a, b)	All numbers between a & b, including a.
a < x ≤ b	(a, b]	All numbers between a & b, including b.
a≤x≤b	[a, b]	All numbers between a & b, including a & b.
x < a & b < x	(-∞, a) U (b, +∞)	All numbers less than a AND All numbers greater than b, but not including a & b.
$x \le a \& b \le x$	(-∞, a] U [b, +∞)	All numbers less than a AND All numbers greater than b, including a & b.

Be very careful on the last 2. You may come across something like: x < 3 & 3 < x. This does NOT mean x < 3 < x! Many people get this wrong. In this case we have $x \neq 3$. You may also come across x < 5, 10 < x, again do not write 10 < x < 5, because that would mean 10 < 5, which we all know is not true.

Example: $-6 \le 3k - 9 \le 0$

I recommend making this problem 2 inequalities, $-6 \le 3k - 9$ and $3k - 9 \le 0$. This cuts down on the possibility for the problems mentioned above. Many errors occur when students forget that each part of the inequality must use the addition or multiplication property.

Example: -1 < -2x + 4 < 5

This type of problem can be done "all at once", you just need to pay attention to every step you take!

Example: a + 6 > -2 and 5a < 30Solve each inequality then graph the intersection, since the a > -8 and a < 6 problem states that they both must occur. So the solution is the interval (-8, 6)

Example: 5y > 30 or y - 3 < -2

In this case we graph the union of the intervals, since the problem or y < 1states that either one can happen. y > 61 2 10 -2 -1 0 1 3 4 5 6 7 8 9

Example:

To get a "B" in a course, a student needs an average of at least an 80% but less than a 90% on 6 tests. Rowena received an 82, 76, 83, 92 and 67 (each out of 100) on the first five tests. What does she need on the sixth test to get a "B" in the course?

What we know:

This is an average problem, the average formula for this problem: $\frac{\text{sum of numbers}}{c}$

Let x be the unknown test grade. She needs at least an $80 \rightarrow 80 \le average$. She needs less than a $90 \rightarrow average \le 90$.

 $80 < \frac{82 + 76 + 83 + 92 + 67 + x}{80} < 90$

The "average" can be replaced by the formula in line 1, and the last two combined:

$60 \leq \frac{6}{6}$	
$80 \le \frac{82 + 76 + 83 + 92 + 67 + x}{6} \le 90$	The first step for solving this is to simplify the middle part.
$80 \le \frac{400 + x}{6} \le 90$	Now we can multiply each part by 6, to remove the fraction. Multiply.
$6*80 \le 400 + x \le 6*90$	
$480 \le 400 + x \le 540$	Finally subtract 400 from each side.
$\frac{-400 - 400}{80 \le x} \le 140$	Since the test is out of 100 she will not get more than 100.
$80 \le x \le 100$	Interval Notation: [80, 100]