Compound Linear Inequalities

Notations

Inequality Notation	Interval Notation	Meaning in Words
$\mathrm{x}<\mathrm{b}$	$(-\infty, b)$	All numbers less than b , but not including b .
$\mathrm{x} \leq \mathrm{b}$	$(-\infty, b]$	All numbers less than b , including b .
$a<x$	(a, + ${ }^{\text {a }}$)	All numbers greater than a , but not including a .
$a \leq x$	[a, + ${ }^{\text {) }}$	All numbers greater than a, including a.
$a<x<b$	(a, b)	All numbers between a \& b, but not including a or b.
$a \leq x<b$	[a, b)	All numbers between $\mathrm{a} \& \mathrm{~b}$, including a .
$a<x \leq b$	(a, b]	All numbers between $\mathrm{a} \& \mathrm{~b}$, including b .
$a \leq x \leq b$	[a, b]	All numbers between $\mathrm{a} \& \mathrm{~b}$, including a \& b .
$\mathrm{x}<\mathrm{a}$ \& $\mathrm{b}<\mathrm{x}$	$(-\infty, a) \cup(b,+\infty)$	All numbers less than a AND All numbers greater than b , but not including a \& b .
$x \leq a \& b \leq x$	$(-\infty, a] \cup[b,+\infty)$	All numbers less than a AND All numbers greater than b, including $a \& b$.

Be very careful on the last 2. You may come across something like: $x<3 \& 3<x$. This does NOT mean $x<3<x$! Many people get this wrong. In this case we have $x \neq 3$. You may also come across $x<5,10<x$, again do not write $10<x<5$, because that would mean $10<5$, which we all know is not true.

Example: $\quad-6 \leq 3 k-9 \leq 0$
I recommend making this problem 2 inequalities, $-6 \leq 3 \mathrm{k}-9$ and $3 \mathrm{k}-9 \leq 0$. This cuts down on the possibility for the problems mentioned above. Many errors occur when students forget that each part of the inequality must use the addition or multiplication property.

$-6 \leq 3 k$	$-9 \leq 0$
+9	+9
$+3 \leq 3 k$	≤ 9
$+3 \leq \frac{3 k}{3}$	$\leq \frac{9}{3}$
3	
$1 \leq k$	≤ 3

$-6 \leq 3 k-9$	$\&$	$3 k-9 \leq 0$
$3 \leq 3 k$	$\&$	$3 k$
$1 \leq \mathrm{k}$	$\&$	k

Example: $-1<-2 x+4<5$

$$
\begin{aligned}
& -1<-2 x+4<5 \\
& \begin{array}{lll}
-4 & -4 & -4 \\
\hline
\end{array} \\
& -5<-2 x<1 \\
& \frac{-5}{-2}>x \quad>\frac{1}{-2} \text { AND turn the symbols! } \\
& \frac{5}{2}>x>-\frac{1}{2} \text { or }-\frac{1}{2}<x<\frac{5}{2}
\end{aligned}
$$

This type of problem can be done "all at once", you just need to pay attention to every step you take!

Graph:

Example: $\quad a+6>-2$ and $5 a<30$
Solve each inequality then graph the intersection, since the $a>-8$ and $a<6$ problem states that they both must occur. So the solution is the interval $(-8,6)$

Example: $5 y>30$ or $y-3<-2$
In this case we graph the union of the intervals, since the problem $y>6 \quad$ or $\mathrm{y}<1 \quad$ states that either one can happen.

Example:

To get a "B" in a course, a student needs an average of at least an 80% but less than a 90% on 6 tests. Rowena received an $82,76,83,92$ and 67 (each out of 100) on the first five tests. What does she need on the sixth test to get a " B " in the course?

What we know:
This is an average problem, the average formula for this problem: $\frac{\text { sum of numbers }}{6}$
Let x be the unknown test grade.
She needs at least an $80 \rightarrow 80 \leq$ average.
She needs less than a $90 \rightarrow$ average ≤ 90.
The "average" can be replaced by the formula in line 1, and the last two combined:

$$
80 \leq \frac{82+76+83+92+67+x}{6} \leq 90
$$

$80 \leq \frac{82+76+83+92+67+x}{6} \leq 90$
$80 \leq \frac{400+x}{6} \leq 90$
$6 * 80 \leq 400+x \leq 6 * 90$
$\begin{array}{r}480 \leq 400+x \leq 540 \\ -400-400-400 \\ \hline 80 \leq x \leq 140\end{array}$
$80 \leq x \leq 100$

The first step for solving this is to simplify the middle part.

Now we can multiply each part by 6 , to remove the fraction.
Multiply.
Finally subtract 400 from each side.
Since the test is out of 100 she will not get more than 100.

Interval Notation: [80, 100]

